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Learning Outcomes:

e Obtain an intuitive and working understanding of numerical methods for the basic
problems of numerical analysis.

e Gain experience in the implementation of numerical methods using a computer.

e Trace error in these methods and need to analyze and predict it.
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Course introduction

This book provides a complete guide for the implementation of Computer
oriented numerical methods concepts. This book is very much helpful for you
career development in the IT industries, so Computer oriented numerical
methods is very much essential in this competitive world. There are large
numbers of examples, model questions, objectives, summaries of important
topics and learning activities are available in this book, which are very much
useful for universities and job oriented examinations of various reputed
companies. It is very useful for BCA, MCA and PGDCA student of Universities,

computer institutions and so on.

This book covers four blocks and we discussed many topics with detailed
explanation for each blocks; Block one deal with computer arithmetic and solution
of non-linear equations, block two deals with solution of linear algebraic equations,
block three deals with interpolation and curve fitting and finally block four deals

with numerical differentiation and integration.

Most of the concepts in the text are illustrated by several examples are important
topics in their own right and may be treated as such. We feel that, at the stage of a
student’s development for which the test is designed, it is more important to cover
several examples in great detail than to cover a broad range of topics cursorily. All
the formulas and theorems in this text have been tested and debugged. Of course,

any errors that remain are the sole responsibility of the course writer.

We have tried the best to avoid the mistakes and errors, however their presence
cannot be ruled out. Your valuable suggestions and corrections are welcomed to

improve our quality. This book is dedicated to all of our students and colleagues.



Biock 1: introduction

In this block, we will learn about the computer arithmetic and
solution of non linear equations. In this we get the knowledge of
Newton Raphson method, Regula faisi method, secant method

and etc. this block is divided into one unit are as follows.

Unit 1. it deals with computer arithmetic and non-linear

solutions.



INIT-1

COMPUTER ARITHMETIC AND SOLUTION
OF NON-LINEAR EQUATIONS
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OVERVIEW
A computer is a device or machine for making

calculations or controlling operations that are expressible in
numerical or logical terms. It is nothing but a system accepting
input from a user process the same, and giving the output in the
required format. It is capable of manipulating numbers and
symbols under the control of set instructions known as a

computer program.



In order to write computer program without any logical
error, it is recommended programmers prepare a rough writing
showing the steps involved in the program. This is called an
algorithm. An algorithm presents step-by-step instructions

required to solve any problem.

The main feature of computer, which influence the
formulation of algorithm. Formulation of algorithm is the main

subject matter of the Numerical Analysis.

LEARNING OBJECTIVES

After studying this unit, you should be able to discuss about

s Explain the concepts of Floating Point Arithmetic

Operations
% Discuss the sources of errors
< Explain the concept of pitfalls in Computation

%+ To find solution of non linear equations using Bisection,
Fixed Point, Regular Falsi, Newton's Raphson and
Second Method.

% Discuss Convergence criteria of lterative Methods

1.1 FLOATING POINT REPRESENT OF NUMBERS

Computers have both an integer mode and a floating
point mode for representing numbers. The integer mode is used
for perfbrming calculations that are known to be integer value
-and have limited usage for numerical analysis. Floating point
numbers are used for scientific and engineering applications.

Computers represent floating point numbers in binary form.
For generality, they use a binary form of scientific notation.
In standardized base 10 notation, 29.25 = 0.2925 x 10°.

In binary notation, 29.25 = 11101.012 = 0.1110101¢) x 2°.



Computer has standard format of floating point numbers:

I - .
Precision | Number | Bits for | Exponent | Range | Decimal
of Bits | Mantissa Digits
’___. o i ]
Single 32 24 8 27128 15 6
2127
7_"__ SIS ——
Single 48 40 8 2% to 11
2127
Double 64 53 11 iR 16
to
21023
sy - o]

Floating Point Arithmetic Operations: The floating point arithmetic

operations are addition, subtraction multiplication and division.

Addition: If exponents are equal then sum of two floating point

number,

Case 1:

Let a=.4516E3 and b=.5433E3,

4516
+ .5433

.9949

The sum of aand b is .9919E3

Case 2:

Let a=.4616E3 and b =.6533E3 then sum of aand b is,

A4616E3

+ .65633E3

1.1149E3



Here 1.1149E3 can be written as .1114E4.

i.e., the exponent is increased by one and the last digit of the
mantissa is chopped off. The sum of aand b is .1114E4.

If exponents are unequal then sum of two floating point number,
a=4616E3 andb =.6533E5, here exponent of a is smaller than
b and then the exponent of a is shifted right by a number of

places equal to the difference in the two exponents and hence
a = .0046E5.
.0046E5
+ B533E5
~ .B579E5
Thus the answer would be .6579E5
Similarly, if a=.4616E3 and b=.6533E7 then,
.0000E7
+ .6533E7
~ 6533E7

Here a is will be shifted 4 places to the right i.e., a = 191000E7.
The answer would be .6533E7.

Subtraction: If exponents are equal then subtraction of two
floating point number, _let a=.4341E3 and b=.4232E3 then
subtract b from a,

A341E3
+ .4232E3
.0109E3

Then answer of a - b is .0109£3

=]




If exponents are unequal, if a=.4543E-3 andb=.8341E-4,
subtract b from a. Here exponent of b is smaller than a, then the
exponent of b is shifted right and exponent increased by one for

each right digit.
Hence, b =.0834E 3.
4543E -3
+ .0834E-3
~.3709E -3
Thus the answer would be .3709E& - 5.

Multiplication: Two numbers are multiplied in the normalized
floating point mode by multiplying the mantissa and adding the

exponents.
If a=.7232E13 andb=.2342E-15,

axb=0.16937344F -2

= 0.1693E ~2.
if a=.4212E13 and b=.1231E-15,
axb=0.05184972E -2

=0.0518F£ -2
=0.5180E -1

Division: Two numbers are divided in the normalized floating
point mode by dividing the mantissa of the numerator by the
denominator. The denominator exponent is subtracted from the

numerator exponent.

if a=2222E-17&b=.1010E-10 then

% =2.2000E~7=.2200E -5,



1.2 SOURCES OF ERRORS

When using numerical algorithms, we try to

¢ Minimize numerical errors in computation
¢ Recognize unavoidable errors and
e (if possible, reduce computation time)
The most common ways errors enter numerical calculations are
¢ Round off error (finite representation of numbers)

e Truncation error (approximating complicated functions

with simpler ones in calculations)

e Errorin input (finite accuracy of measured inputs) and

e Bugs in software.

1.3 NON-ASSOCIATIVITY OF ARITHMETIC

Consequence of the floating point is that the associative

and distributive laws of arithmetic are not always valid.

ie,(a+b)y~c#(a-c)+b
a(b-c) # (ab - ac)

These are illustrated with examples below.
Let a= 4554E1

b= .4445F - 1

c=.4543E1

(a+b) = .4554E1 + 4445E —1
= 4554 E1+.0044E1

= 4598E1
(a+b)—c = 45981 — 4543E]
= 0055E1
= .5500E —1

10



(a—c)=.4554FE1 - 4543F1
=.0055E1
=.1100E -1

(a—c)+b=.1100E —1+.4445E —1
=.5545E -1
s(a+b)—-c#(a—c)+b (Associative Law is not valid)
Let a=.5555E1
b= 4545E1
¢ = 4535E1
(b~c)=.0010E1 =.1000E -1

a(b—c)=.5555E1x.1000E -1
=.0555E0
=.5550E ~1
ab = 5555E1x 4545F]1
=.2524E2

ac =.5555E1x .4535F1
= 251972
ab—ac =.0005E2 = .5000E -1

s.a(b - c) # ab - ac. (Distributive Law is not valid).

1.4 PROPAGATED ERRORS

Propagation of errors:

Let wdenote one of the arithmetic operations +,-,x, / and w' be
the corresponding computer version including rounding.
x,,y, € A are numbers being used for calculation, and x,, y, are
true(real) numbers. And let e :=x, -x,, n:=y,—y,. Then

FARTYL - DT = PARYY - ETWYT A ys - A4

T hal

propagated ervor  rounding or chopping error

If an exact rounding is used

Gty o awyal 9 Lequyaddt 172

11



Or

s

Wiy o= gy g LA

I L

Rounding: '* = " /%, chopping:

Propagated Errors

1. Multiplicative case:
SARL o FTyT = f.;; * el"\‘ri g v rj} R o o ST o o e S S S R 1

Reli oy s qpph = SRLLEOZZR o e Jw = Redlead + Bellys
ey Pt e A s

2. Division case :

L FEINIPS £ YRR I NUPRE & SUCRIS I SRR B | o f
TPy Ea LA~ L1d N WU e B e - N EARR I ’f.:i.:‘l”i‘i USRS S H ]
feedlay fygp ) o ‘ - X -
oty rrlye i

(1«8~ {1+7)

oo e e Rellea) ~ Rel{y

L+

3. Addition and subtraction:

{zazyr) ~lrrowlissxy

Elnlt /1

Relivs £ ya) = :
er oy

Rel(x, £ y,) may be extremely large if x, £ y, is
small(overflow).

Relative errars for multiplicative and division do not propagate
rapidly but those for addition and subtraction may propagate

rapidly.

1.5 PITFALLS IN COMPUTATION

When the result of a floating-point operation is not

representable as a normalized floating point number, and

12




exception occurs. A main contribution of Computer Arithmetic

was to standardize on how exceptions are handled. There are

five kinds of exceptions, as listed in the table below.

S. No. | Exception Name | Cause Default Result
. I o

1 Overflow Result too large to represent | Return +
as a normalized number (- Infinity)

2 Underflow ]T:(esult too small to represent | Return subnormal
as a nonzero normalized | number or 0
number

3 Divide-by-zero | Computing x/0, where x is | Return +
finite and nonzero (- infinity)

4 Invalid Infinity-infinity, 0*infinity, NAN
infinity/infinity, 0/0, sqrt (-1),

x rem O, infinity rem y,
comparison with NAN,
impossible binary-decimal
conversion
5 Inexact A rounding error occurred rounded result

1.6 SOLUTION OF NON-LINEAR EQUATIONS

Non-Linear Equation: A non-linear equation is an equation

containing a transcendental function (non-linear functions).

Examples of such an equation are

x—sinx—e" =0

x> logx—~2logx+1=0

13



Some methods of finding solutions to a transcendental equation
(Non-Linear equation) use Bisection, Regular False, Fixed

Point, Newton Raphson and Secant Method.

1.7 THE BISECTION METHOD

Bisection Method: If f (x) is real and continuous in the interval
from xg to b and f (xp) and f (x;) have opposite signs,

Thatis: f(xg) *f(x1) <0
There is at least one root in the equation.
A new root estimate can be determined by:

:Jco-}-xl
2

X

Having the value for the root 3 cases are possible:

1. if f(xo) > 0 and we make x; = x;
2. if f(xz) < 0 and we make xg = x;
3. if f{xz) = 0 and c is the exact root.

In this new interval we again calculate f(x,). Calculation will stop
when the maximum iterations number is reached or we
terminate the process if two consecutive iteration values are
nearly equal.

Example 1.1

Find the largest root of f(x)=x°*-x-1=0 for x = 1 and x = 2
using Bisection method.

Solution:

We choose xp = 1 and x; = 2.

Let f(x)=x"-x-1=0

Then f (xo) = -1 and f(x4) = 61 requirement f (xg) f (x1) <0 is

satisfied.



Therefore x, =

Xo+ X _

1.5000

The results from Bisect are shown in the table.

The entry n indicates the iteration number n.

I

N Xo X7 l X S(x2)
1 1.0000 2.0000 1.5000 8.8906
(2 (X1 x2) 1.0000 1.5000 1.2500 1.5647
'3 (x1x2) 1.0000 1.2500 1.1250 -0.0977
4 (xo— X2) 1.1250 1.2500 1.1875 0.6167
5 (X1 X2) 1.1250 1.1875 | 1.1562 0.2333
6 (X1 X2) 1.1250 1.1562 1.1406 0.0616
7 (X1 X2) 1.1250 1.1406 1.1328 -0.0196
8 (Xp X2) 1.1328 1.1406 1.1367 0.0206
9 (x1 X3 1.1328 1.1367 1.1348 0.0004
10 (X4 — X2) 1.1328 1.1348 1.1338 -0.0094
| -
Here f (xz) = -0.0096 when x; is 1.1338.
Therefore, root is approximately 1.1338
Advantages:

1. It always converges.

2. You have a guaranteed error bound, and it decreases with

each successive iteration.

3. You have a guaranteed rate of convergence. The error bound

decreases by %2 with each iteration.

15




Disadvantages:

1. It is relatively slow when compared with other root finding
methods.

2. If one of the initial guesses is closer to the root, it will take
larger number of iterations to reach the root.

1.8 FIXED POINT ITERATION

Fixed Point lteration: Fixed point iteration is a method of computing

fixed points of functions. More specifically, given a function f defined
on the real numbers with real values (or, more generally, defined on a
metric space with values in itself) and given a point X, in the domain

of f, the fixed point iteration is x , = f(x, ),n=0,1,2,... which gives
rise to the sequence x, x,,x,,... which is hoped to converge to a

point x. If fis continuous, then one can prove that the obtained x is a

fixed point of f.

Example 1.2
Find the root of the equationx’ +x+1=0, using fixed point
iteration.
Solution:
Letfix)= x’ +x+1=0
f(-1) < 0 and f(0 ) > 0. Therefore, the root lies between —1 and 0.
X +x+1=0
fe,x’+x=-1
ie, X (x+1) =-1

1

ie, x=-
x? +1
. . 1 _
The equation can be written asx = —— . so that it takes
X+
the form x ., = f(x,).,n=01,2,....
Take xp=-1. Then x, =~ =-0.5.

2
x,” +1

16




The iteration are,

Iteration (1) Xn foo)= — o g X0 4+x, +1
0 5| -0.5000 0.375

1 -0.5 -0.8000 0312

2 -0.8 -0.6097 0.1636

3 -0.6097 -0.7290 0116

4 0729 -0.6529 0068
s -0.6529 -0.7010 -0.045

6 -0.701 -0.6705 0.028

7 -.6705 -0.6898 -0.018
N -0.6898 -0.6775 : 0.011

9 -0.6775 -0.6853 -0.007

10 -0.6853 -0.6804 -0.004

1 0.6804 -0.6835 -0.004

12 -0.6835 -0.6815 -0.001

13 -0.6815 -0.6828 -0.001

14 -0.6828 -0.6820 -0.0007

Therefore, required root is —0.682.

Advantage: Economical and Easy Method

Disadvantage: No guarantee of convergence

17




1.9 REGULAR FALSI METHOD

Regular Falsi Method: The false-position method is a bracketing
method similar to the bisection method laying the difference in the
way that we obtain the new x; estimate. In this case the new x; is
determined by f(x4) and f(xg). This method is also known as the
linear interpolation method and as the formula:

v = xof(xl)”xlf(xo)
L f) - f(x)

Example 1.3
Find a root of 3 x + sinx - ¢" = 0 using Regular Falsi Method.
Solution:

Now let us consider the function f (x) in the interval [0,
0.5] where f (0) * f (0.5) is less than zero and use the Regular
Falsi scheme to obtain the zero of f (x) = 0.

i.e., Xo=0
X1= 0.5
X, = X0/ (%) = x, f(x,) =0.3757
f(x])"f(xo)
N Xp X+ X2 f(x2)
1 ' 0.0000 0.5000 0.3757 0.0380

2 (X1 X2) 0.0000| 0.3757 0.3619 0.0031

3 (X1 X2) 0.0000 | 0.3619 0.3605 0.0002

4 (X1 X2) 0.0000 | 0.3605 0.3604 -0.0001

Here f(x) = -0.0001.

So one of the roots of 3 x + sin x - " = 0 is approximately 0.3604

18



Advantages:
1. Guaranteed convergence.
2. It will be superior to bisection method.

Disadvantages: It is; however, slow as it is first order

convergent.

1.10 NEWTON RAPHSON METHOD
The Newton-Raphson Method: Methods such as bisection
method and the false position method of finding roots of a

nonlinear equation f(x)=0 require bracketing of the root by two
guesses. Such methods are called bracketing methods. These
methods are always convergent since they are based on reducing

the interval between the two guesses to zero in on the root.

In the Newton-Raphson method, the root is not
bracketed. Only one initial guess of the root is needed to get
the iterative process started to find the root of an equation.
.Hence, the method falls in the category of open methods. The
Newton Raphson method is perhaps the most widely used of all
root-locating formulas. Beside the initial guess, xp, it's required
that the first derivative, £ (x), is known. The converging this

method is very fast. The Newton-Raphson formula:

f(x)

xi+l i
J'(x)

The sufficient condition for convergence of Newton-Raphson

method is

X = Xy

19



Exampie 1.4

Solve the equation f(x)=x"-25=0 using Newton-Raphson

method.

Solution:

X Xy

Given X

I
f(x)=x*-25=0
£1(x) = 2x

Take xp=7

S0 5005

,/.’(x“ '

The lteration are

Iteration Xo X1 f (xo) f (x1) X, — %,

Number X
L
1 7 l 5.2857 24 14 3242
2 (xo—x1) | 52857 | 50070 | 2.9386 | 10.5714 0527
3 (Xo—X:) | 5.0070 ’ 50000 | 0.0700 | 10.0140 .0013
4 (X0« x1) | 5.0000 | 5.0000 0 J 10 0
Since |7 =22 =0, when x, =0.

xl

Therefore, the root is 5.0000.

20




Advantages:
1. It is rapidly convergent in most cases.

2. It is simple in its formulation, and therefore relatively easy to

apply and program.

3. It is intuitive in its construction. This means it is easier to
understand its behavior, when it is likely to behave well and

when it may behave poorly.
Disadvantages:
1. It may not converge.

2. It needs to know both f(x) and f'(x). Contrast this with the

bisection method, which requires only f (x).

1.11 SECANT METHOD
The Secant Method: The Secant Method is identical to the

Newton-Raphson however the knowledge of the derivative is

not needed, being this replaced by the backward finite divided
difference. Note that this approach requires an additional initial

estimate (x;.1), resulting the formula:

X, . = x/f(xi--l)—xiv-lf(xi)
" fx)—f(x)

Example 1.5

Find the root of the equation &*- 3x = 0
Solution:

Givenf(x) =€"-3x=0

Let xo=1.5and x; =2

S FAC VbV AC VRPN Y
T S - f(x)

21



The iteration are

n Xo X1 X, f(x2)
1 1.5000 2 | 15085 | -0.0085
2 (xo—x2) | 1.5065 2 15090 | -0.0047
3 (Xo—x2) | 1.5090 2 | 15106 | -0.0023
4 (xo—x2) | 15106 2 15113 | -0.0012
5 (xo—x2) | 15113 2 15116 | -0.0008
6 (Xg— X2) 1.5116 2 1.5118 | -0.0005
7 (ox2) | 15118 2 1.5119 | -0.0003

Here f.(x) = -0.0003 when x> = 1.5119. Hence, the root is
approximately 1.5118.

Advantages:

1. It converges at faster than a linear rate, so that it is more

rapidly convergent than the bisection method.

2. It does not require use of the derivative of the function,

something that is not available in a number of applications.

3. It requires only one function evaluation per iteration, as
compared with Newton’s method, which requires two.

Disadvantages:
1. It may not converge.

2. There is no guaranteed error bound for the computed
iterates.

3. Newton’s method generalizes more easily to new methods for

solving simultaneous systemns of nonlinear equations.

22




1.12 CONVERGENCE CRITERIA OF ITERATIVE METHOD

The Convergence criteria of various iterative methods

based on order of convergence and evaluation of functions per

iteration.
S.No | Method | Formulae Order of Evaluation
convergence of
functions
per
iteration
1 Bisection | , —X ™% Gain of One | 1
2
per iteration

2 Fixed x,, = f(x,) 1 1

Point
3 False _ X% () —x /(%) 1 1

, =

Position Jx)= T x)
4 Newton- =X _ S 2 2

Raphson /')
5 | Secant _ xS G) =X /() | .62 1

i+l
Sxn) - f(x)

KEY WORDS -
Keywords: Logic, Algorithm, Binary notation, Scientific

notation, Associative, Distributive, Transcendental Function,

Linear Interpolation method, Convergence, and Iteration.

LEARNING ACTIVITIES

a) Fill in the Blanks

1) Non-linear equation is an equation containing a
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2) The new root estimate can be determined by

b) State whether true or False:
1) The Newton Raphson method is perhaps the most

widely used of all root-locating formulas.

ANSWER TO LEARNING ACTIVITIES

a) Fill in the Blanks:
1) transcendental function

Xy + X,
2) x,=— 5

Fa

b) State whether true or False:
1) True

MODEL QUESTIONS:

1. Explain floating point numbers and its operations.

2. Discuss about the Non-Associativity of Arithmetic with

example.
3. Write a note on Sources of Errors.
4. Write a note on Pitfalls in Computation.
5. What do you mean by Non-Linear equations?
6. Discuss about the Convergence Criteria of Iterative Method.

7. Find a real root correct to four decimals of the equation.

x’ +1.2x" —~4x-4.8=0 by Bisection Method.
8. Solve 3x—1-cosx=0 by Fixed Point Method.
9. Solve x’—2x-5=0by Regular Falsi Method..
10. Find a root of the equationxe™ -2 =0.

11. Solve e¢* —sinx =0 using Secant Method.
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Block 2: introduction

In this block, we will learn about the basic solution of
linear algebraic eguations. You will get clear idea about
cramer's rule, gauss elimination rule, gauss Jordan, gauss
seidal, jacobi’s iterative method. This unit is divided into one unit
are as follows. |

Unit 2: it deals with solution of linear algebraic equations.

(Y]
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UNIT-2

SOLUTION OF LINEAR ALGEBRAIC
- EQUATIONS

Structure

Overview

Learning Objectives

2.1 System of Linear Equation
2.2 Cramer's Rule

2.3  Gauss Elimination Method
2.4 Pivoting Strategies

2.5 Gauss Jordan Method

2.6  Jacobi lterative Method
2.7  Gauss Seidal Method

2.8 Comparison of Direct and lterative Method
Keywords

Answer to Learning Activities

References

OVERVIEW

Many physical systems can be modeied by a set

of linear equations which describe relationships between system
variables. In simple cases, there are two or three variables; in
complex systems (for example, in a linear model of the
economy of a country) there may be several hundred variables.
Linear systems also arise in connection with many problems of

numerical analysis. Examples of these are the solution of partial
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differential equations by finite difference methods, statistical
regression analysis, and the solution of eigen value problems.
Hence there arises a need for rapid and accurate
methods for solving systems of linear equations. The student
will already be familiar with solving by elimination systems of
equations with two or three variables. This Step presents a
formal description of the Gauss elimination method for n-

variable systems.

LEARNING OBJECTIVES

After studying this unit, vou should be able to discuss about

% System of linear equations
% Explain the concepts Cramer's Rule
% Discuss about the Pivoting Strategies

% To find solution of linear equation using Gauss
Elimination, Jordan, Jacobi and Seidal Method

* Explain the concept of Diagonally Dominant

% Discuss Comparison of Direct and Iterative Method

2.1 SYSTEM OF LINEAR EQUATIONS

A linear equation in the n unknowns X, x», X3 is an equation of

the form:

ax, +a,x, +---+ax, =b,
Where q,,a,,---a, and b are constants.

The name linear comes from the fact that such an equation in
two unknowns or variables represents a straight line. A set of
such equations is called a system. An example of a system of

three linear equations in the three unknowns x, y and z is:



4x + 8y + 4z = 80
2x + ly—-4d4z = 7

3x - ly+ 22z = 22

2.2 CRAMER’'S RULE

Given a system of linear equations, Cramer's Rule is a

handy way to solve for just one of the variables without having
to solve the whole system of equations. They don't usually teach
Cramer's Rule this way, but this is supposed to be the point of
the Rule. Instead of solving the whole system, you can use

Cramer's to solve for just one variabie.

Cramer’s Rule
Given the system of equation;
aix + by = ¢

axx + byy = ¢ where the determinant

ai b1
D= | £0
as b2
Then,
C1 b1
Co bz
Dy
X= =
D
ai b1
az b
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and

a Cq
’ dz C>
Dy
y: -
w_m__ 5
ai b1
az bz
Example 2.1

Solve the system 7x — 5y = - 50 and 2x +y = - 7 using Cramer’s Rule

Solution:
D= 212 E; :H '1|:?-(_1U)=17
0 = bb‘g E; . H S?Dl = 35 (-50) = B5
D, = 2‘2 Z_ - ’2 0 _ 45 (100) = 51

Expanded Cramer’s Rule
System of equation;
aix + by + ¢4z = dy
ax+by+coz=d;

azx + bay + c3z =ds

(o8
<D




where the determinant

a1 b1 C1
D= |az by ¢ #0
das b3 Cs
Then,
d1 b1 C1
Dx= d2 bz Co
d3 b3 C3
aiq d1 Cq
Dy= az dz C2
a3 d3 C3
a; by d,
Dz= do bz dz
as b3 d3
and
D
x:D".y=-——'5&z=—-l-)—:-
D D D
Example 2.2

Solve the following system of equations by Cramer’s Rule:

S5x—2y+3z=-1
3x+y—-2z=25
2x—4y+5z=16



Soiution:

= 5(5-8) + 2(15-(-4)) + 3(-12 -2)
5(-3) +2(19) + 3(-14)
-15+38-42

=-19

D=-19

-2 3
4 5

-2 3
1 -2

- 29

_q|1 2
4 5

-

= -1(5-8) -25(-10 - (-12)) - 29(4 - 3)
=-1(-3) -25(2) -29

=3-50-29

Dy=-76

= 1(15 - (-4)) + 25 (25 -6) + 29 (-10 -9)
=194 25(19) + 29(-19)

=19( 1+ 25 - 29)

= 19(-3)

D,=-57




5 -2
2 4

5 -2
3

-24

=-1(-12 - 2) -25( -20 - (-4)) - 29(5-(-6))

= -1(-14) -25(-16) -29(11)

=14+400-319

=905

D.=95
zD’r:_—Fl—6—=4
D =19
_b, _57_
D -19

and

=P s
D -19

2.3 GAUSS ELIMINATION METHOD

Gaussian elimination is a method for solving

matrix equations of the form Ax=5.

To perform Gaussian elimination starting with the system of

equations

a1 @42
A1 @22

1 A2

- aix | %1 &
- Ak || %2 by

o g I L Xy b
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Compose the "augmented matrix equation”

by
&2

X1
X2

A1 A o g
@21 @2z e A2g

ldf‘;l ‘1’»»‘;2 ﬂ.;k‘b;HXkJ

Here, the column vector in the variables x is carried along for
labeling the matrix rows. Now, perform elementary row
operations to put the augmented matrix into the upper triangular

form

' ' ' ’
ay Ay e @y |9
' ’ ?

0 ag - @y |

0 0 - ayld
Solve the equation of the kth row for x,, then substitute back into

the equation of the (k-7)st row to obtain a solution for *«-1, etc.,

according to the formula
1 g 4
K = [b; = z QZ;J- Xj].
&y

J=i+

A matrix that has undergone Gaussian elimination is said to be

in echelon form.

Example 2.3

Solve the system of equations by Gauss Elimination method.
X +x,+x,=3

2%, +3x,+7x, =0

% +3%, ~2x,=17
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Solution:

Consider the matrix equation

111 ][ x 3
2 3 7 ||x,|=|0
13 =2|x | [17

In augmented form, this becomes

1 1 1 [3]|x
23 7 {0]x
1 3 2 17| x,

Subtracting the first from third row aand subtracting 2
times the first row from the second row gives

11 1 1(3(x
01 5 |-6]x
02 3(14|x

Subtracting 2 times the second row from the third row gives

11T 1| 3]|x
01 5|-6|x
0 0 —13] 26| x,

Restoring the transformed matrix equation gives

11 1 % 3
0 1 5 X, [=]-6
0 0 -13]|x, 26
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which can be soived immediately to give, x, = 26/-13 = -2

back-substituting to obtain x,=4 and then again back-
substituting to find x, =1

A pivoting strategy is any procedure used to determine
what to use for the diagonal entries as we apply row operations.

The diagonal entries that result from row operations és
we move towards upper triangular form are referred to as pivots
or pivot elements. We use row interchanges only to avoid zero
pivots or small pivots. The reason for this is that pivots become
denominators of the scalars in row operations as we move
toward upper triangular form. Division by small values is a

floating point arithmetic pitfall.

The selective use of row interchanges is referred to as a
PIVOTING STRATEGY.

There are several common pivoting strategies:

» Natural order of pivots; no row interchanges permitted. With

this strategy not every nonsinguiar linear system can be solved
» Row or Parfial pivoting (also called Maximal column pivots)

» Scaled partial pivoting

» Full (complete) pivoting

Example 2.4

Solve the system of equations by Gauss Elimination method.
9x, +3x, +4x, =7 |

4x,+3x, +4x, =8

X +x, +x =3
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Solution:

Consider the matrix equation

934 7x
43 4 8x
111 3|x

Interchange the first and third rows (without switching the
elements in the right-hand column vector) gives

11 1]3]x

4 3 4(8|x

9 3 47| x

Subtracting 9 times the first row from the third row gives

11 1 |3 |x
4 3 4 8 |x
0 6 -5 20| x

Subtracting 4 times the first row from the second row gives

11 1 |3 |x
0 -1 0 |4 |x
0 6 -5 20| x
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Finally, adding -6 times the second row to the third row gives

ERTNE
oo s [o))

Restoring the transformed matrix equation gives

T T x| |3
0 -1 0fx =4
0 0 Sfx| |4

Which can be solved immediately to give xs = -4/5,

Back-substituting to obtain *2=4 and then again back-
substituting to find x1 = ~1/5.

2.5 GAUSS JORDAN METHOD

This is a variation of Gaussian elimination. Gaussian

elimination gives us tools to solve large linear systems
numerically. It is done by manipulating the given matrix using
the elementary row operations to put the matrix into row echelon
form. To be in row echelon form, a matrix must conform to the
following criteria:

1. If a row does not consist entirely of zeros, then the first

non zero number in the row is a 1.(the leading 1)

2. If there are any rows entirely made up of zeros, then they

are grouped at the bottom of the matrix.

3. In any two successive rows that do not consist entirely of

zeros, the leading 1 in the lower row occurs farther to the

right that the leading 1 in the higher row.




From this form, the solution is easily (relatively) derived.
The variation made in the Gauss-Jordan method is called back
substitution. Back substitution consists of taking a row echelon
matrix and operating on it in reverse order. Normally the matrix
is simplified from top to bottom to achieve row echelon form.
When Gauss-Jordan has finished, all that remains in the matrix
is a main diagonal of ones and the augmentation, this matrix is
now in reduced row echelon form. For a matrix to be in reduced
row echelon form, it must be in row echelon form and submit to
one added criteria:
« Each column that contains a leading 1 has zeros

everywhere else.

Since the matrix is representing the coefficients of the given
variables in the system, the augmentation now represents the
values of each of those variables. The solution to the system

can now be found by inspection.
Example 2.5

Solve the system of equations by Gauss Jordan method.

2%+ Xy = X3 =2

X, +2xy =2

X=Xy %, = 5%

Solution:

Consider the matrix equation

2 1 -1~ =2
0 1 2 ||x,|=|2
1 -1 1 || =, 5

In augmented form, this becomes
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Interchange the first and third rows gives

1 -1 1 5]x

01 2 2{ x|
2 1 -1 2|x

Subtracting 2 times the first row from the third row gives

I -1 1 5 |x
01 2 2 |x
0 3 3 -12]x

Add second row with first row gives

103 77x
01 2 2 x
03 -3 —12|x

Subtracting 3 times the second row from the third row gives

103 77x
01 2 2|(x
00 -9 -18]x,

Divide the third row by 9 then,

L 03 7|x
012 2(x
001 2|x
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Subtracting 2 times the third row from the second row gives,

103 7x
010 2x

001 2|x

Subtracting 3 times the third row from the first row gives,

100 1x
010 -2|x
001 2|x

=x=Lx,=-2,x =2

2.6 JACOBIITERATIVE METHOD

Diagonally Dominant: Simpler test of convergence is that if the

matrix A is strictly diagonally dominant then the iterations will

converge.

Matrix A is strictly diagonally dominant if the diagonal
element of a row (in absolute terms) is greater than the sum of

all the other terms in the row.

Example
ie.,|aﬁ|> Zn: |az.j|;i
Ji
10 3 -1
-3 10 2
1 2 10

So matrix is strictly diagonally dominant.
Jacobi and Seidal iterations using this matrix will converge.
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Jacobi lteration Method: The Jacobi method is easily derived

by examining each of the » equations in the linear system

Zax

n. If in the ™" equation

we solve for the value of @i while assuming the other entries of =
remain fixed, we obtain

'=——(b Zau 1

JEi

This suggests an iterative method defined by

Y a2y,

j#!

k)

which is the Jacobi method. Note that the order in which the
equations are examined is irrelevant, since the Jacobi method
treats them independently. For this reason,'the Jacobi method is
also known as the method of simultaneous displacements, since

the updates could in principle be done simultaneously.

Now to find x/s, assumes an initial values for the x;'s are zero in
Jacobi lteration Method.

Example 2.6
Given the system of equations,

10x, + x,+x, = 12
X, + X, + 10x, =12
X, + 10x, + x, = 12.

Find the solution using Gauss Jacobi lteration Method.
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Solution:
The coefficient matrix

10 1 1
[4]=| 1 1 10|
1 10 1

We note that A is not diagonally dominant.
However it can be made diagonally dominant by changing the
rows as

10 1 1
[4]=[1 10 1
1 1 10

Rewriting the equations, we get

12—x, -
X, = XX
10
X, g12~xl—x3
10
X, _12-x-x
10

Assuming an initial guess of

Iteration 1:

12-0-0
KT

=1.2000

_12-0-0
10

X,

=1.2000
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lteration 2:

X

12-12-12

10

= (.96

=0.96

=0.96

The above iterations can be simply carried out exhibited in the

following tabular form

Iteration x = 12—~;c(2] —X, % = 12—1)56— X, ;2—_?‘6“"2
K 1.2000 12000 1.2000

2 0.9600 0.9600 0.9600

3 1.0080 1.0080 1.0080

4 0.9984 0.9984 0.9984

5 1.0003 1.0003 1.0003

6 0.9999 0.9999 0.9999

7 1.0000 1.0000 1.0000

8 1,0000 1.0000 1.0000

This is close to the exact solution vector of
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2.7 SIEDAL ITERATIVE METHOD

Gauss Seidal Method: Given a general set of n equations and
n unknowns, we have

anx, +apx, -l-CIB.?C3 +...+ah,xn =C

Ay X, +dpX, TAdxpX; +..+4,,X, =C,

X, + A%, + X, 4.4 a,X, =C

T n n

If the diagonal elements are non-zero, each equation is
rewritten for the corresponding unknown, that is, the first

equation is rewritten with x, on the left hand side and the
second equation is rewritten with x, on the left hand side and so

on as follows

o o G T OXy — Xy =%,
=
an
C) az,xl a23x3 ...... (12” x"
X, =
dy
G Ty )X Ty 0%y e L N B LR
xn—i
an—l.n—l
Gy X~y Xy —a,, %,
xn =
d

These equations can be rewritten in the summation form as

h
¢ - Z ax,
=1

J#
X, =—
apn

45



%2
| JC;_ J
Ay
j n
’ Cot = D0t sX,
Jj= .
_ jEn-
xn-—l -
I an—l,n—l
n
Cn— Zawx;‘
J=l
J#n
x” —
a

nhn

Hence for any row |,

n
€= Z X,
J=1

_ J#i .
X, =——,i=12,...,n
a..

"

Now to find x/s, one assumes an initial guess for the x/s and

then use the rewritten equations to calculate the new guesses.
Example 2.7
Given the system of equations,

12x, +3x, -5x, =1

3x, +7x, +13x, =76

X, +5x, +3x, =28.

Find the solution using Gauss Seidal Method.
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Solution:

The coefficient matrix

12 3 -5
[4]=3 7 13].
1 5 3

We note that A is not diagonally dominant.

However it can be made diagonally dominant by changing the

rows as
2 3 -5
[4]=|1 5 3
3 7 13

Rewriting the equations, we get

1-3x, +5x,
A
12
28 —x, —3x,
X, = ————————
5
76 —-3x, —7x,
X, = ————
13

Assuming an initial guess of

X, 1
x, [={0
X, 1
lteration 1:
x =1;M = 0.50000

‘ 12

. 28-(05)-3(1) _ 49000
5

Xz
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. 16— 3(0.50000)— 7(4.9000)

1 3.0923
: 13 |
1 - 3(4.9000) + 5(3.0923)
p 2123039 = 0.14679
12
e -
x, = 28=(0.14679)-3(3.0923) = 37153
| 5
_ -7
. =16 3(0.14679)-7(4.900)  _ 3.8118

13

The above iterations can be simply carried out exhibited in the

following tabular form

Iteration % = 1-3x, +5x, y = 28 —x, = 3x, v, = 76 - 3x, = 7Tx,
12 ’ 5 13
1 0.50000 4.900 3.0923
2 0.14679 3.7153 3.8118
3 0.74275 3.1644 3.9708
4 0.94675 3.0281 3.9971
5 0.99177 3.0034 4.0001
6 0.99919 3.0001 4.0001

This is close to the exact solution vector of
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2.8 COMPARISON OF DIRECT AND ITERATIVE
METHODS

Both direct and iterative method has their strengths and

weakness and a choice is based on the particular set of

equations to be solved.

Direct Method lterative Method

The computational effort is | Computational effort s
approximately (2n%3) | approximately* (2n?)
arithmetic operations in | arithmetic operations per

each step. iteration.

The rounding errors may | lterative method is the

become quite large. small rounding error.

Any special structure in the | Special pattern of zeros in
matrix of coefficients is | the coefficient matrix could
difficult to preserve during |be used to tailor a

elimination procedure with reduced |

calculation effort.

Keywords: Linear Equatioh, Matrix, Echelon form, Diagonal,

Pivot, Diagonally dominant, Simultaneous Displacemént."

Coefficient.

LEARNING ACTIVITIES
a) Fill in the blanks:
1) The Jacobi method is also known as the

b) State whether true or False:
1) The variation made in the Gauss-Jordan method is called

back substitution
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Answer to learning Activities

a) Fill in the blanks:

1) Method of simultaneous displacements
b) Sta te whether true or False:

1) True

Model Questions

1. Solve the following system of equations by Cramer’s Rule
x+2y+3z=10
2x-3y+z=1
3x+y-2z=9
2. Solve using Cramer's Rule
X, +X,+x=0
X, =X, +X; =2
2%, +x,~x, =1
3. Solve the following system of equations by Gauss Elimination
Method
X =X, +x;,=1
=3x, +2x, -3x, =—6
2x,—5x, +4x, =5
4. Solve the following system of equations by Gauss Jordan
Method
10x, 4+ x, +x, =12
2x, +10x, +x, =13
X, +x,+5x, =7
5. Solve the following system of equations by Jacobi Method
X, +17x, - 2x; =48
X, + X, +9x, =30
30x, —2x, +3x, =48

6. Given the system of equations
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3x, +7x, +13x, =76
X, +5x, +3x, =28

12%, +3x, -5x, =1

find the solution using Gauss-Seidal method.
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Biock 3: introduction

In this block, we will learn about the basic of interpolation and
curve fitting. We will get a clear idea about langranges method,
Newton’s interpolation, least Square approximation etc... this

block is divided into one unit are as follows

Unit 3: It deals with interpolation and Curve Fitting.
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UNIT-3

INTERPOLATION AND CURVE FITTING

Structure

Overview

Learning Objectives

3.1 Problem of Interpolation

3.2 Lagranges method of Interpolation

3.3 Inverse Interpolation

3.4  Newton’s Interpolation Formulae

3.5 Interpolation at Equally spaced points of Newton’s
Forward and backward difference formulae

3.6  Error of the Interpolating Polynomial

3.7  Fitting of polynomials and Curve

3.8 Least square approximation of functions

3.9 Linear and Polynomial Regression

Keywords

Answer to Learning Activities

References

OVERVIEW

In engineering applications, data collected from the field

are usually discrete and the physical meanings of the data are
not always well known. To estimate the outcomes and,
eventually, to have a better understanding of the physical
phenomenon, a more analytically controllable fu'nction‘ that fits
the field data is desirable. The process of finding the coefficients
for the fitting function is called curve fitting, the process of
estimating the outcomes in between sampled data points is

called interpolation; whereas the process of estimating the

53



outcomes beyond the range covered by the existing data is

called extrapolation.

LEARNING OBJECTIVES

“+ Numerical Interpolation concept

#+ To explain Lagrange’s Interpolation Method

<+ Discuss Euler's Method, Improved Euler's Method and
Modified Euler's Method

3.1 PROBLEM OF INTERPOLATION

In the mathematical subfield of numerical analysis,

interpolation is a method of constructing new data points from a
discrete set of known data points.

A different problem which is closely related to interpolation
is the approximation of a complicated function by a simple
function. Suppose we know the function but it is too complex to
evaluate efficiently. Of course, when using the simple function to
calculate new data points we usually do not receive the same
result as when using the original function, but depending on the
problem domain and the interpolation method used the gain in
simplicity might offset the error.

3.2 LAGRANGE’S METHOD OF INTERPOLATION

Many a times, a function y=f(x) is given only at

How does one find the value of 'y’ at any other value of ‘x'?
Well, a continuous function f(x) may be used to represent the
‘n+1’ data values with f(x) passing through the ‘n+1’ points.

Then one can find the value of y at any other value of x. This is
called interpolation. Of course, if 'x' falls outside the range of 'x'
for which the data is given, it is no longer interpolation but
instead is called extrapolation.
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Since Lagrange's interpolation is also an N" degree _
polynomial approximation to f(x) and the N" degree polynomial
passing through (N+1) points is unique. However, Lagrange's
formula is more convenient to use in computer programming.

Polynomial interpolation involves finding a polynomial of
order ‘n’ that passes through the ‘n+1’ points. One of the
methods to find this polynomial is called Lagrangian
Interpolation. Other methods include the direct method and the
Newton'’s Divided Difference Polynomial method.

Lagrangian interpolating polynomial is given by

£ =Y L))

th

where ‘n’ in f, (x) stands for the »" order polynomial that

approximates the function y = f(x) given at (n+1) data points

as (»xl']ay() )’(xlf’yl)’ """ ’(xnhhyn-i)’(‘xn’yn)’ and

X—Xx

n .
Li (x) = H :
j-0 X, —X,

A+

L,(x) is a weighting function that includes a product of (n-1)
terms with terms of j =i omitted.

Hence Lagrange’s Interpolation formula is,

_ (x—-x ) x-x,)(x-x,) ftx )+ (x—x, ) x~x,) - (x~x,) Fix

i (xp =% )%y = 2x,)+(x, = x,) (x, = x, )%, = x,) (%, = x,) o F

f(x)

e (x—xﬂ)(x—xl)“'(x-xn-l)
(xn —x())(x" _xl)"'(x" ‘_xn_l)

f(x,)

55



| Example 3.1 |
| Using Lagrange's formula find the value of y when x = 0.3. The
values of x and y are:

v

[y
e -
=Y
~1

v
L

y 1 3 49 129 813

Solution:
Here xo= 0, x1=1,x2=3x3=4, x4 =7 and x=0.3
By Lagrange’s Interpolation formula,

o (e x ) -x M x -x M x - x,) (X = 2 )(x = 2, )(x ~ X, )(x ~ x,)
f(X) - (xc —-X )(xo —X )(xo — X )(xo _xa) f(XO) " (x1 - xo)(xl - xz)(xl X )(x, - x4) f(xl ) "

(x_xo)(x_xl)(x—xz)(x_xﬁ) f(x4)

(x.1 ) )CO)(X.‘I - X )(14 —X, )(‘ril - JC3)

_ (03-1)(03-3)03-403-7),
(=DEDEDET)

L (03-0)(0.3-3)(03-4)(0.3~7) ,
M(=2)(-3)(-6)

N (0.3-0)(0.3-1)(0.3-4)(0.3-7) 19
G2 (=1)(-4)

L (03-0)(03-1)(03-3)(0.3-7) ¢
(HB3)A)-3)

(03— 0)(0.3-1)(0.3—-3)(0.3~4) .
(7)(6)(4)3)

3

= 1.831
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3.3 INVERSE INTERPOLATION

Inverse Interpolation is defined as the process of

calculating the value of argument corresponding to a given

value lying between two tabulated functional values.

In the Lagrange’s interpolation formula, we have treated

y as the dependent variable that was expressed as a function of

the independent variable x. If we treat x as function y as

independent variable then Lagrange’s Interpolation formula can

be put as

x= O 0O=y) G- y) %3 =)0 =3,) (Y =y,) ok
(yo "'yl)(yo"_yz)"'(yo“y,,) (yl—yo)(yl—}’2)"‘(}’1—}’,,)

e =Y =) (= Y)
O =YX =2 Fp=Ypt)

Example 3.2

Using Lagrange’s Inverse Interpolation formula find the value of

x when y = 19. The values of x and y are:

Solution:
Here xo= 0, X1 = 1, X2 = 2, ¥0=0, y4=1, and y,=20

By Lagrange’s Interpolation formula,

e O=PI0=y) O30 -y) L =Y -0)

Do =00 =9 " =)= =)=

_(19-1(19-20) | (19-0)19-20)  (19-0)19-1),
T (0-1)(0-20) (1-0)1-20)  (20-0)(20-1)

=0+1+1.8

=24
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Let the function f be tabulated at the (not necessarily
equidistant) points [xp, X1 . . .\'\, xn]. We define the divided
differences between points as follows:
first divided and difference between x; and x, by,

S (xg5x,) =£%)—:{(ﬁ)-
and it is denoted by Af(x,). 17 %o
Similarly, |
Af (x)) = f(x,,x,) =-j:(_3-c-2l}§-£ﬁ-)—
- f()

Af(xh_l) = f(xn—l’xn) = Y —x
Second divided and difference betweeh x, xp, x1 by,
N f(r) = £33 = L) =T Gl )

X, —X
Similarly, the nth divided differences is diven by,

A" F () = s XX 1) = F Xy X)) = [ (X5 Xpseees X, )

X, X v
The divided differences are conveniently evaludted within a table,

shown in symbolic form in Table. Notice that the table is arranged
so that the function values required at each stage are adjacent.

Table: Divided Difference Table

0 2 f{zo)
flea, 2
1oz f{m) flzo, 21,23
flz1,2) flo, 21,25, 73]
2 Ty f{$2] f[zbmﬂaxfi] f[J?g,xhﬁlg,L‘."-g,iE;]
f[:ﬂﬂ,xa] .{[311327335341
3 Iy f(.'.’ig) f[-'ﬂg,-l';};l'a}]
f[mfirz*il
4z f{z)
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Example 3.3
Construct the Divided Difference for the following data:

x Jo 1 3 6 Wﬁd o
EW*# N -6 4 169 ‘L921 - #‘}
Solution:
The divided difference Table:
x|/ M) [ A ) [ Afx [ A
0 1
-7
1 -6 4
5 1
3 4 10 0
55 1
6 169 19
188
10 921
L _J

3.4 NEWTON’S INTERPOLATION FORMULAE
According to divided differences, we find

F(x)= (%) +(x=x,) £ (%,%,)
Fx) = f(xx )+ (x~2) f(2, %5, %,)

Je,xy, %) = f(x,X,%,) +(x—x,) f(x,%),%,,X,)

S X, ) = [ (X, Xp5e. X, )+ (x—x,) f (X, Xy, X,)
i.e. Multiplying the second equation by (x-x¢), the third by  (x-
xo)(x - x1). etc., and adding the results yields Newton's divided

difference formula,
J(x) = f(x)+ (x=x) f (3, %)+ (X~ x )x = %) f (%, %, %,)

Fo (= xg) o (x=x, ) (%, X500, x,) + R
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where R =(x—x )(x—x) - (x—x,) (X, %, X...%,) .

The remainder term R vanishes at xq, x1,..., xn, Where we infer

that the other terms on the right-hand side constitute the

interpolating  polynomial or, equivalently, the Lagrange

polynomial. If the required degree of the interpolating polynomial

is not known in advance, it is customary to arrange the points x,,
., xn, according to their increasing distance from x and add

terms until R is small enough.

Example 3.4

Given

E 0 io.zm 0.4
1) o ~ !0.198669 0.389418

find /{0.1) using Newton’s Interpolation formula.

Solution:
The divided difference Table:
x Fx) M) ATf(x)
0 0
0.993345
02 | 0.198669 20.099000
70953745 | '
04 [0.389418

Using Newton’s Interpolation formula, we get,
Sy = 1 0xg) + 0= x0) [ (3053,) + (= X ) = x,) f (3, %, %, )+
F(0.1)=0+(0.1-0)x 0.993345 + (0.1-0) x (0.1 - 0.2) x (~=0.099000)
=(.100325.
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3.5 INTERPOLATION AT EQUALLY SPACED POINTS
Lagrange Interpolation has a number of disadvantages

» The amount of computation required is large

» Interpolation for additional values of requires the same
amount of effort as the first value (i.e. no part of the
previous calculation can be used)

» When the number of interpolation points are changed
(increased/ decreased), the results of the previous
computations can not be used

» Error estimation is difficult (at least may not be
convenient)

Use Newton Interpolation which is based on developing
difference tables for a given set of data points

» The N-th degree interpolating polynomial obtained by
fitting N+1 data points will be identical to that obtained
using Lagrange formulae!

» Newton interpolation is simply another technique for
obtaining the same interpolating polynomial as was
obtained using the Lagrange formulae.

Newton’s Forward Difference Formula:

We assume equi—épaced points

b= mitareal vze

Forward differences are now defined as follows:
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We take x, =x,+ih, i=0,1,..,where h is the interval width. The

divided differences can be simplified, since we no longer need
to show the interval width explicitly. For this case we define the
forward difference by

A (x)=f(x+h)= f(x) or Af(x))= f(x,,)— f(x).
The connection between this and the equivalent divided
difference is given by
FO) =S () ()

X, — X, h

or Af(xo): h.f(x{;sx:)-

f(xnsxl):

We now regard Aas the forward difference operator, which
operates on f{x;) to give f(X1)- f(xj). Thus

Aflm) = A{Af(zd)
= A{f{zin) - [{z))
= fzitz) = Hzin) - (fz) - (=)
= flzie) = 2f (a1} + f )

It is easy to check that A is linear operator, that is, it satisfies
A f(z) + pglz)) = AA[(z) + pdglz)

Which allows simpler manipulations.

Proceeding slightly differently, we obtain

A’flzi) = i) — fzen) — (flzag) — f{z)
= Af[Zia, 0] — Af 2]
W o, 2i01, 2iga)-

You will use induction in an exercise to prove the results

A () = Tpgl-1"* (1) Flzi)
= nlh™ 2, 2iv1, -0 Bign)
= KLY, 2 < £ < 2y




Newton's divided Difference Interpolating Polynomial now

becomes
y= f(xo)+(x“xo)f(xo=x1)+(x"x0)(x—xl)f(xosxpxz)""”
=X )X —x) (- x,) f (%, X0 X,)

= f)+ sh L) L), shsh- h)“ ) 1o shlsh =1 (sh—(n 1)h>A;f:(x°

s(v 1)

= f(x,) +5Af(x,) +

A? S(x)+-+

s(s=1)---(s—n+1) ,
e A" f(x,)

XX
where s = p 0.

The forward differences are computed in a tabular form similar fo
that for divided differences. Typically we set up a difference table.

N e N
WA ar, = f~f 2 = Af-Af (A7, = f - FIA7 =& -7
1 W= Se S WF = ANCAR AT = AT aT
s = fi-i- VAom A=A
3 hy fam g~
41 ¥

Newton’s Backward Difference Formula:
There is also a backward difference operator, ¥, which is
defined by
Vf(x)=f(x)—-f(x—h),
Hence we have Newton's Backward formula for equal intervals is,

S(S-I-l) S(S+1)---(S+n—1)v,,

n!

y= f(X,,)+ Vf( x,)+ ==V f(x,)-

f(x,).

Where s = '—_x" .
h
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Example 3.5

Given
X | 0 2 4 6
Fix) |2 0 2 20 #

find /(5) using Newton’s Forward Difference formula.

Solution:
The Difference table is:

x Ax) Af (x) A1 (x) A1 (x)

0 2 |
-2

2 0 4
2 12

4 2 16
18

6 20

Here xo=0,x=4and h =2,
By Newton's Forward Difference Formula,

s(s

=f(x0)+sAf(x0)+2—:1)A2f(x0)+-~-'+S(S—])m('s_nﬂ) A" f(x,)
: n:

where s = >0
Hence s = 22 =25
2
Hence y = 24 33 (L), 25x15 4 25x1.5x5 )
1 2 6 |

=2-5+7.5+3.75

=8.25
Example 3.6
Given |
¥ 1961 1971 1981|1991  [2001

y 46 66 21 93 101
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find {1996) using Newton’s Forward Difference formula.

=101-4+0.5+0.0625+0.1171875
=97.6796875

Solution:

X Y Vy vy Viy Vty

1961 46
\ 20 }

1971 66 -5 J
B - [15 2 -

1981 81 -3 -3

12 -1
[ e s
1991 93 | -4
|8

| 1 N

2001 101 | l

L 1
By Newton's Backward Interpolation formula,
+1 s+1)--- 1

Y= £+ S0 1)+ LR o ML D g

Where s =2

Here x = 1996, x, = 2001 and h = 10

STt g X=X, _ 1996 -=2001 =05

10
Hence,
=101+ ~0.5 8.+ (—0.52)(0.5) (—4) + (—0.5)((6).5)(1.5) (-1)+ (—0.5)(0.2(1.5)(2.5)

3.6

ERROR OF THE INTERPOLATING POLYNOMIALS

Suppose that the interpolation polynomial is in the form

i) =

The statement that p interpolates the data points means that

= Ly X

"1 oa,.

ga=1

I x

"_LV
) Qe

| aqa

|y
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plah =y forall ¢ € {0,1,...,n}.
When interpolating a given function f by a polynomial of degree
n at the nodes xy,....x, we get the error

J) — patay= floo, ... epz] [T(x - 2)

P
where ./ [70; - -+ T01: 7] is the notation for divided differences.
When fis n+1 times continuously differentiable on the smallest
interval / which contains the nodes x; and x then we can write
the error in the Lagrange form as

Fin-+1) ey n

flr) — pplx) = I;———i{'—} H{;}: — i)

(ne 1 130 25,
for some & in /. Thus the remainder term in the Légrange form of
the Taylor theorem is a special case of interpolation error when
all interpolation nodes x; are identical.

In the case of equally spaced interpolation nodes x; = xg +
ih, it follows that the interpolation error is O(h"). However, this
does not necessarily mean that the error goes to zero as n — «,
In fact, the error may increase without bound near the ends of
the interval [xo,x,]. This is called Runge's phenomenon.

The above error bound suggests choosing the
interpolation points x; such that the product | [ (x = x)) | is as
small as possible.

Newton’s Interpolation Error:

Assume that £ ) defined on e, bl which contains the
equally spaced nodes *x=¥i+kh Additionally, assume
that £ ) and the derivatives of £ *) up to the order n+1
are continuous and bounded on the special
subintervals [¥o X1] | [Xe. Xe] | [Xe, %3] | [Xe, %] | and [Xe %51,

respectively; that is,
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£ xy | = Mn for xg <x <Xn,

forn=1,23,45 The error terms corresponding to these three
cases have the following useful bounds on their magnitude

(1) |R, (x)L%Iih2 is valid for xe[xo,xl],

(i) |R, (x)| < 9\/% R is valid for x e[x,,x, ],

(iii) [Ry(x)| s%/%‘-h“ is valid for x & [x,,x,],

|Rg (X) | = \/4750+290\/ﬁ§
3000

Mk’ is valid for x e[x,,x,]

(iv)
10+77

(V) [Rs(x)(SWMﬁhs is valid for x e[x,,x].

Newton’s Forward Interpoliation Error:

It can be readily shown that the error at any is:

This error function is identical to that for Lagrange Interpolation

(since the polynomial approximation is the same).

However we note that f"*'(x)can be approximated as

In fact if 7"*'(x) does not vary dramatically over the interval

AT
!;v +
"."’~ 1‘l

£
7T e =t

M=1

i

Thus the error can be estimated as
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Approximation for e(x)is equal to the term that would follow the
last term in the N" degree polynomial series for g(x).

If we have N + 2 data points available and develop an A™"
degree polynomial approximation with N + 1 data points, we can
then easily estimate e(x). This was not as simple for Lagrange

polynomials since you then needed to compute the finite

difference approximation to the derivative in the error function.

If the exact function f(x)is a polynomial of degree
M <N, then g(x)will be an (almost) exact representation of
/() (with small round off errors).
i.e., Error in Newton’s Forward Interpolation formula:

R - s(s—=1)(s—2)-(s—n)
" (n+1)!

X —X
A™ f(x,), where s = 2 L.

Newton’s Backward Iinterpoiation Error:

The difference between the interpolated value and the actual
value is known as error in the polynomial interpolation. This
determines the accuracy of the interpolation formula.

Error in Newton’s Backward Interpolation formula:

_ s(s-{—l)(s+2)---(5+n)V,,+I X—X,

R f(x, +nh)., where s =

! (n+1)!
Newton Interpolation is much more efficient to implement than
Lagrange Interpolation.

3.7 Fitting of Polynomials and Other Curve

Curve Fitting: Curve fitting is finding a curve which matches a
series of data points and possibly other constraints. Field data is
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often accompanied by noise. Even though all control
parameters (independent variables) remain constant, the
resultant outcomes (dependent variables) vary. A process of
quantitatively estimating the trend of the outcomes, also known

as regression or curve fitting, therefore becomes necessary.

Fitting Lines and Polynomial Curves to Data Points:

Let's start with a first degree polynomial equation:
y=ar+b

‘This is a line with slope a. We know that a line will connect any
two points. So, a first degree polynomial equation is an exact fit

through any two points.
If we increase the order of the equ'ation to a second degree
polynomial, we get:
=4 4+ br 4o
This will exactly fit three points.

If we increase the order of the equation to a third degree

polynomial, we get:
y=ar +br" +er+d
This will exactly fit four points. A more general statement would
be to say it will exactly fit four constraints.
Fitting other curves to data points:

Other types of curves, such as conic sections (circular, elliptical,
parabolic, and hyperbolic arcs) or trigonometric functions (such

as sine and cosine), may also be used, in certain cases.

Curve fitting is nothing but approximating the given function f(x)
using simpler functions say polynomials, trigonometric functions,

exponential functions and rational functions. However, the main
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difference between interpolation and Cuive fitting is, in the
former, the approximated curve has to pass through the given
data points. Here again polynomial functions are the one which
are been used widely in the applications than the other

functions.

3.8 Least Square Approximation of Functions

The curve fitting process fits equations of approximating
curves to the raw field data. Nevertheless, for a given set of
data, the fitting curves of a given type are generally NOT
unique. Thus, a curve with a minimal deviation from ail data
points is desired. This best-fitting curve can be obtained by the
method of least squares.

The method of least squares assumes that the best-fit
curve of a given type is the curve that has the minimal sum of
the deviations squared (feast square error) from a given set of
data.

Suppose that the data points are,

(o 2 Uwemd where x is the independent

variable and y is the dependent variable. The fitting curve

flx)has the deviation (error) d from each data point,

. Y I i e B O G Fo e e e F e
e, A=y flml dymye fin) dyy = 3y G
<., ’ ’ srey

According to the method of least squares, the best fitting curve
has the property that:

" 3
. y ¥ 2 ) e, 3 -
T=dy* +d Fotdy =3 d :} [\2 -—-j(:g.}] = & MO
" ot st W
i=l i==1
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3.9 LINEAR AND POLYNOMIAL REGRESSION

Regression:
In regression analysis, /least squares, also known as

ordinary least squares analysis is a method for linear regression
that determines the values of unknown guantities in a statisticai
model by minimizing the sum of the residuals (difference
between the predicted and observed values) squared. Today,
this method is available in most statistical packages.
Furthermore, many other types of optimization problems can be
expressed in a least squares form, by either minimizing energy
or maximizing entropy. The Least squares line is often times
called the line of Regression. Polynomials are one of the most

commonly used types of curves in regression.
Linear Regression:

Linear regression analyzes the relationship between two
variables, X and Y. For each subject (or experimental unit), you
know both X and Y and you want to find the best straight line
through the data. In some situations, the siope and/or intercept
have a scientific meaning. In cother cases, you use the linear
regression line as a standard curve to find new values of X from
Y, or Y from X.

The term "regression", like many statistical terms, is used
in statistics quite differently than it is used in other contexts. The

term "regression" is now used for many sorts of curve fitting.

In general, the goal of linear regression is to find the line that
best predicts Y from X. Linear regression does this by finding
the line that minimizes the sum of the squares of the vertical

distances of the points from the line.

71



Polynomial Regression:
Polynomial regression fits data to this equation:
Yeh+ BX+ Cx2 e DXILEXE

You can include any number of terms. If you stop at the second
(B) term, it is called a first-order polynomial equation, which is
identical to the equation for a straight line. If you stop after the
third (C) term, it is called a second-order, or quadratic, equation.
If you stop after the fourth term, it is called a third-order, or
cubic, equation. If you choose a second, or higher, order
equation, the graph of Y vs. X will be curved (depending on your
choice of A, B, C...). vs. Y would be linear. From a

mathematical point of view, the polynomial equation is linear.

Polynomial regression can be useful {o create a standard curve

for interpolation, or to create a smooth curve for graphing.
Multiple Regressions:

Multiple Regressions fits data to a model that defines Y as a
function of two or more independent (X) variables. For example,
a model might define a biological response as a function of both
time and concentration. The term multiple regression is usually
used to mean fitting data to a linear equation with two or more X
variables (X1, X2, ...).

Y=A+BX;+ CXo+ DXs+E X .

Nonlinear multiple regression models define Y as a function of

several X variables using a more complicated equation.

~J]
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The Least-Squares Line (Linear Fitting):

The least-squares line uses a straight liney=a+bx to
approximate the given set of data, (x,3),(x,»,)(x,,%,),

wheren>2. The best fitting curve f(x)has the least square

error, i.e.,
" .on ,
=S [y = £ ;:..E [~ @ +&x)]" = min.

I te]

The unknown coefficients a and # can be obtained:

3 —ngxy

i=l i=1

a= —
i3 _[ZXJ
i1 i=1
nzn:xyr 3 X y ¥
b—‘: i=1 i=l =]

Example 3.7
Find the least-squares line y = a+ bx for the data
1—' x | 2 | 4 [0 1 2
L y 1 2 3 3 4
Solution:
Here n =5,

a and b can be obtained by,

Zny —-Zxey

=1 i=l

(3

i=]
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n

5 (5]

i=] ji=|

b:

X Y x? Xy

-2 1 4 -2

-1 2 1 2

0 3 0 0

1 3 1 3

2 4 4 ‘8
2x=0 2. y=13 > k=10 Say =7

13x10-0x7
Hence gq = e
5x10-0

_130
50

=2.6

S5x7-0x13
h=—
5%x7-0?

35

50

=0.7

y=26+07x or y=0.7x+2.6
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Fiting a Second Degree Parabola Using Least
Squares Line (Polynomial Fitting):

The least-squares parabola uses a second degree curve
y =a+bx+cx’ to approximate the given set of data,
(xl?y[)i(xl’yl’)'”(xn’yn)’ Where n 2 3‘

The best fitting curve f(x) as the least square error, i.e.,

" 5
i

n :
II= gyj -/ s'\x;)}'g = S !‘y- — (@ +bx +ex;7) = mn
A..d o i

!
H

f==] =1

The unknown coefficients a, b, and ¢ can hence be obtained by

solving the below linear equations.

n n n
Zy,. = na-i—be,. +chj2
=] i=] i=l
n [ n n
2 3
Zx‘.y,. = aZx,. +b§:x,. -f—ch,.
i=1 i=] i=l i=l

n i h h

dxty, =a) x +bY x} +c) x!

i=1 i=] i=l i=l
Example 3.8

Find the least-squares parabolic y = a + bx + cx” for the data

‘X 3 -1 1 3
y 15 5 1 5
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Solution:

Here n=4 and

a,b and ¢ obtained by solving the below equation,

n

i=]

ix,y, = azn:x, . bZn: x’+ cixlf‘
=1 i=1 i=1 i=]

Dy, =na+ bix,. 4 cz":x,.2
i=] i=l

n n n n
2
Nty = ay x> +b) x/ +ch,.4 :
i=] i=1 i=1 i=1

.
X y x? X Xt Xy xzy
3 15 9 27 |81 -45 135
-1 5 1 -1 1 -5 5
1 1 1 1 1 1 1
3 5 9 27 81 15 45
230 | Xv=26 | 3¢ =2 | 3 =00 DY < | D=3 | D¥y=185

c=0.875.
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20h = -34

4a+0b+2c =26

20a+0b+164c =186

The resulting linear system for determining a, b, and c is

The solution to linear systema =2.125, b=-1.7and




Hence,

y=2.125-1.7x +0.875x" or

y=0.875x" ~1.7x+2.125.

Fitting mth Degree Polynomials using Least-Squares Line:

When using an m" degree polynomial
y=a,+ax+a,x’ +--+a,x" to approximate the given set of
data, (x,y).(x,,¥,) - (x,,y,), where n>m+1,the best fitting

curve f(x)has the least square error, i.e.,

W
&

:[ B
oy I 5 .
M= r} [ = 7y )f' Ji :1 — (g +ax Fany” Footagx™ | = min

;~[ rui

Please note that g,,4,,a,,--,and a,are unknown coefficients
while all xand yare given. The unknown coefficients
a,.q,.a,,--,and a, can hence be obtained by solving the below

linear equations.

Zy: —na0+a12x +azzx + +amZx”’

i=1

n h n n
3
Zx,y,. = aOZx, +a,fo +a22x‘. +---+am2x;"”
=} i=1 i=1 i=1

n n n n

2 - 2 3 4 . m+2
dYxly=a ) x5l vay x5 vay xt++a, >y x
=l i=) i=1 i=]

n h H L4 1
n _ n m+] m+2 . m
ZJC,— yi- —QGZJC,- +£IIZ}C, +aZZx, + +am2xj
i=1 i=1 i=1 i=] .. i=l
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Data Linearization Method for Exponentiai Curve
Fitting (Nonlinear Curve Fitting):

Fit the curve y =ce™ to the data points
(0, (%,,) (%, 0,) -
Taking the logarithm of both sides we obtain
In(y) = In(c) + In(e™) = In(c) + bx
In(y) = In(c) + bx
Introduce the change of variable, X =x ,Y=In(y), B=b

and 4 = In(c). Then the previous equation becomes, ¥ = 4+ BX

which is a linear equation in the variable X and Y.

Use the change of variables X =x and ¥ =In(y)cn all the data

points and obtain
X,=x,and Y, =In(y,)for k=1,2,...,n
This process is called Data Linearization.

Fit the points (x,,»,).(x,,¥,)---(x,,»,) with a Least-Squares line

of the formY = 4+ BX .

Comparing the equations ¥ = 4+ BX and Y =In(c) + BX we see
that A4=In(c) and B=bh. Thus h=Bandc=¢" are used to
construct the coefficients which are then used to "fit the
curve" y=ce™ to the given points (x,,3).(x,,,)*(x,,¥,) in

the xy-plane.
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Example 3.9

Use the data linearization method and find the exponential fit
y =ce™, for the data points (1,0.6), (2,1.9), (3,4.3), (4,7.6) and
(5, 1.6094).

Solution:

By data linearization, the original points (x,,y,)in the xy-plane

are transformed into (X,.Y,) =(x,,In(y,))in XY — plane. Hence,
{(X 13 ={(, In(y )}

={(1,In(0.6)),(2,In(1.9)). (3,1n(4.3)),(4,In(7.6)),(5,In(12.6))}
={(1,In(0.6)),(2,In(1.9)),(3,In(4.3)),(4,In(7.6)),(5,In(12.6))}
= {(1,~.5108),(2,0.6419),(3,1.4586),(4,2.0281),(5,2.5337)}

By Least-Square Lines y = ce™ becomes,

Y =A+BX where Y =In(c)+ BX, A=In(c) and B=b.

We can obtain the value of A and B by solving below equations,

iYZn:Xz-;iXiXI’
_ =l i=l =l i=l

4 ==

i=1

S-S x5y
i=| i=1

i=l

B =

where n=35,
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X, =x, Ve | Y, =In(y,) X: XX,

1 0.6 -0.5108 1 -0.5108
2 1.9 0.6419 4 1.2838
3 43 1.4586 9 4.3758
4 7.6 2.0281 16 8.1124
5 12.6 2.5337 25 12.6685
DX, =15| Xy, =27 > ¥ =6.1515| Y X* =55 | > X\ ¥, =

J 25.9297

_6.1515x55-15%25.9297

5x 55157 =1

Hence A

B= 5x%25.9297~15%x6.1515

Sx55_15 =0.7474

We know that h=Band c=e¢? are used to construct the

coefficients which are then used to "fit the curve" y =ce™ to the

given points (x,,,),(x,,»,)---(x,,¥,) in the xy-plane.
ne=e' =" 203634

07474 x

The required equation is y = 0.3634e

KEY WORDS

Keywords: Quadrature, Cubature, Definite Integral, Derivative,
Polynomials, Slope, Tangent, Mid-Point, Taylor- Series,
Extrapolation, Argument, Adjacent, Remainder, Accuracy,

Curve, Linear, Parabola, Regression.
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LEARNING ACTIVITIES
a) Fill in the blanks:

1) is a method of constructing new data points
from a discrete set of known data points

2) The difference between the interpolated value and the
actual value is known as in the polynomial
interpolation

b) State whether true or false:

1) Lagrange's formula is more convenient to use in
computer programming

2) This best-fitting curve can be obtained by the method of
least squares.

Answer to learning Activities
a) Fill in the blanks:

1) interpolation

2) error

b) State whether true or False:
1) true
2) true

Model Questions
1. Define Interpolation.

2. Write note on Extrapolation.
3. Using Lagrange’s formula find the value of y when x=3.
The values of x and y are:
x 0 1 2 5
y .2 3 i3 ur’
4. Discuss Inverse Interpolation. '
5. Using Lagrange’s Inverse Interpolation formula find

the value of x when y = 19. The values of x and y are:
y 1 3 4
x 4 12 19
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6. What do you mean by Divided and Difference Method?
7. Construct the Divided Difference for the following data:

X 1 2 4 7 10
1x) 5 10 26 65 22
8. Given
B X ‘ 2 3 4 5
) ‘ 2.626 3.454 4.784 6.986
_;df—(g_;)#using Newton'’s Interpolation formula.
9. Explain Interpolation at Equally spaced points.
10. Given
| x 2.5 3.0 3.5 4.0 4.5 5.0
| f(x) | 24.145|22.043 | 20.225 | 18.644 | 17.262 | 16.047
find £(3.75) using Newton's Forward Iﬁi_%ference formulé
11. Given
x 20 30 40 50 60 70 ‘
f(x) | 0.342 | 0.502 | 0.642 | 0.766 | 0.866 | 0.939 L

find /(45) using Newton’s Backward Difference formula.

12. Discuss Errors of the Interpolating Polynomials.

13. Define Curve Fitting.

14. Discuss different types of Regression.

15. Write note on Least-Square Method.

16. Find the least-squares line y = a + hx for the data
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X Y J
1 110
0 )
1 7
2 5
3 4
4 3
5 0
6 -1
E—

17. Find the least-squares parabolic y = a + bx + cx” for the data:

x -3 0 2 4

y 3 1 1 3

18. Use the data linearization method and find the exponential

fit y = ce™, for the data points (0, 1.5), (1, 2.5), (2, 3.5), (3, 5.0),

and (4, 7.5).
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Block 4: introduction

In this block, we will learn about the basics of numerical
differentiation and integration. We earn knowledge of
trapezoidal rule, simpson's rule and finally euler's rule. This

block is divided into one unit are as follows.

Unit 4: it deals with numerical differentiation and integration.
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NIT-4

NUMERICAL DIFFERENTIATION
AND INTEGRATION

Structure

Overview

Learning Objectives

4.1 Numerical Integration

4.2  The Trapezoidai Rule

4.3  Simpson's one-third Rule

4.4  Simpson's Three Eighth Rule
4.5  Gaussian Quadratic Formula
4.6  Numerical Solution of Differential Equations
4.7  Euler's Method

4.8 Runge-Kutta Methods
Keywords

Answer to Learning Activities

References

OVERVIEW

In numerical analysis, Numerical Integration constitutes a

broad family of algorithms for calculating the numerical value of
a definite integral, and by extension, the term is also sometimes
used to describe the numerical solution of differential equations.
This unit focuses on calculation of definite integrals. The term
Quadrature is more or less a synonym for numerical integration,

especially as applied to one-dimensional integrals. Two- and
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higher-dimensional integration is sometimes described as
Cubature, although the meaning of quadrature is understood for
higher dimensional integration as well.

Numerical ordinary differentiai equalion is the part of
numerical analysis which studies the numerical solution of
ordinary differential equations (ODEs). This field is also known
under the name numerical integration, but some people reserve

this term for the computation of integrals.

Many differential equations cannot be solved analytically,
in which case we have to satisfy ourselves with an
approximation to the solution. The algorithms studied here can
be used to compute such an approximation. An alternative
method is to use techniques from calculus to obtain a series

expansion of the solution.

Ordinary differential equations occur in many scientific
disciplines, for instance in mechanics, chemistry, biology, and
economics. In addition, some methods in numerical partial
differential equations convert the partial differentiai equation into

an ordinary differential equation, which must then be solved.

LEARNING OBJECTIVES

After studying this unit, you should be able to discuss about
< Numerical Integration

% To find approximate solution of an Integral Domain using
Trapezoidal, Simpson’s one-third, and Simpson’s 3/8

rule.
% The Gaussian Quadrature and their basic rules
+» Various forms of Gaussian Quadrature

< To explain Differential Equation
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% Discuss Euler's Method, Improved Euler's Method and
Modified Euler's Method

4.1 NUMERICAL INTEGRATION

There are several reasons for carrying out numerical
integration. The integrand f may be known only at certain points,
such as obtained by sampling. Some embedded systems and
other computer applications may need numerical integration for

this reason.

The basic problem considered by numerical integration is

to compute an approximate solution to a definite integral:

j F(x)dx.

The Newton-Cotes Integration, most commonly used numerical

integration methods are,
¢ The Trapezoidal Rule
% Simpson’s one-third Rule
< Simpson’'s Three Eighth Rule
% Gaussian Quadratic Formula

These commonly used numerical integration method,
approximate the integration of a complicated function by
replacing the function with many polynomials across the
integration interval. The integration of the original function can
then be obtained by summing up all polynomials whose "areas"
are calculated by the weighting coefficients and the values of

the function at the nodal points.
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4.2 THE TRAPEZOIDAL RULE

The trapezoidal rule is a method for finding an
approximate value for a definite integral. Suppose we have the

definite integrai

[]‘f(x)dx.

First the area under the curve y= f(x)is divided into n strips,

each of equal width

h:f?i{’
n
o T
| I
> ) Pt 1 fodog
a b 'a S
The function f(x) s [llustration of Composite
approximated by a Trapezium Rule.

linear function.

The shape of each strip is approximated to be like that of a

trapezium. Hence the area of the first strip is approximately

J-f(JC)CbC (b a) f(a) +f(b) = g(y ot )
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where y, = f(@) &y, = f(b).

The Trapezium Rule estimates the area under a curve between
limits by turning the curve into a set of trapeziums (or strips) and
each strip is made out of two ordinates, so there is always one

more ordinates than there are strips. The formula is:

b
' h
_[y dx =~ 5 {(yo +3,) +2(yl T+t )}

Where h = (b-a)/n

Example

Use Trapezoidal Rule to evaluate the approximate values of the

definite integrals:

sinx dx.

e o

Given that

X 0 0.2 0.4 0.6 0.8 1.0
f(x) 0 0.1987 | 0.3894 | 0.5646 | 0.7174 | 0.8415
Solution:

The Trapezoidal formula is:

b

s = 2204300, 0)

WS sl wiinisison namn mesmon o 1wt svmmcngons s e sl

=—=0.2

b—a 1-0
5
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By Trapezoidal Ruie,

1
fsin xdx = 92—% {(sin0+sin1)+2(sin0.2 +sin 0.4 +sin 0.6 +sin 0.8)}
0

=0.45817.

4.3 SIMPSON’S ONE-THIRD RULE

Simpson’s rules generalize the trapezoidal rule to use
more than two points per interval, so we can use quadratic or
cubic models instead of linear. For a single interval, we will

derive Simpson's 1/3 rule.

We will need to find the quadratic equation that goes
through three points (x:, f(x1)), (X, f(x2)), (x3, f(x3)). We will then
integrate the quadratic to obtain the estimate of the integral.

This also integrates cubic exactly.

Divide the interval [a, b] into n equal segments, each of
width (b-a)/n.

*Apply the Simpson’s 1/3 rule to each pair of segments
*Add up all the results
+This is more accurate than the trapezoidal rule.

Simpson's Rule is formed by approximating a general
curve by a parabola. We won't show you how to determine the
coefficients for the parabola, but it is fairly straightforward. As

before, the width of each of the two intervals is

With a little bit of work, you would find the approximation,
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b
.[f(x) =5 =§'[J’0+4J’1+J’2]

This is Simpson's Rule with one step. More generally, we can
break the interval into several pieces and apply Simpson's Rule
on each interval. For instance, to use » steps, break the interval

b-a

Call the

[a,b] into 2n pieces, each of width h= 5
n

- xcoordinates x,,x,, -+, x,, ;,X,, and let y, = f(x,). Then we have,
b
h
If(x) de = 5, =200+ 40+ 20, + Ay 42y et Ay, + ]

h
=§[(J’o + V) AV st v, )2 Y Yy, 0)]

Example

10
Apply Simpson's one-third (—;—) rule to evaluate J‘g by
5 X
dividing the range into 4 equal parts.

Solution:

Herehzlo—izzﬁzz,
4 4

the computed values of y = %are tabulated as
+Xx

—(

333 .20 143 A11 091
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By Simpson’s One-third Rule,

._‘ix_z_i.[(.333+.091)+4(0.2+0.111)+2(.143)]

1+x

P K |

~1.30

4.4 SIMPSON’S 3/8 RULE

Let the values of a function f(x) be tabulated at points x,

equally spaced by
h=x/+l -x/,’ SO yO =f(x0)’y] =.f(x|)s"'>y3 =‘f(x3)‘

Then Simpson's 3/8 rule approximaling the integral of f(x) is

given by the Newton-Cotes-like formula,

b
[7()- %[(yo+yl)+3<yz+y3>]

The result can be extended by taking n (a multiple of 3),

intervals each of length h is,
y 3h
.[f(x) - g[(yl +yu)+3(yl TV Yty '+.Vn--1.) "l"2(yl + Yyt 'yn--:;)]

Example

6

Evaluate |- 2
dl+x

dx into 6 equal parts by Simpson’s 3/8 Rule.

Solution:

Here h=1,and n=6.
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Now the computed values of y are,

X 0 1 2 3 4 ) 6

Y | 100 | 05 | 0.2 | 0.1 |0.05882|0.03846 | 0.02702

6
[ ; 1 —dx = gxlx[(l.00+0.0Q’707)+3(O.5+0.2+0.05882+0.3846)+2><O.1]
5 + X~

= 1.35708

4.5 GAUSSIAN QUADRATURE

In numerical analysis, a quadrature rule is an
approximation of the definite integral of a function, usually
stated as a weighted sum of function values at specified points

within the domain of integration.

An n-point Gaussian quadrature rule, named after Carl
Friedrich Gauss, is a quadrature rule constructed to yield an
exact result for polynomials of degree 2n - 1, by a suitable
choice of the n points x; and n weights w;. The domain of
integration for such a rule is conventionally taken as [-1, 1], so

the rule is stated as

[Fryax =Y wrex)

i=1
Rules for the basic problem

For the integration probiem stated above, the associated
polynomials are Legendre polynomials. Some low-order rules

for solving the integration problem are listed below.



Number of points, n  Points, x; Weights, w;

1 0 2
2 +.J1/3 1
0 8/9
3
+./3/5 5/9

+0.339881044 0.652145155

+0.861136312 0.347854845

0 0.568889

+0.538469 0.478629

&)}

+0.906180 0.236927

Change of interval for Gaussian quadrature:

An integral over [a, b] must be changed into an integral
over [-1, 1] before applying the Gaussian quadratu're rule. This

change of interval can be done in the following way:

bjf(z)dz: b;a ]J-f[b;ax-ka;bjdx

After applying the Gaussian quadrature rule, the following

approximation is obtained:

b-a < (b—a a+bj
waf X, +
) A 2 2
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Other forms of Gaussian Quadrature:

The integration problem can be expressed in a slightly
more general way by introducing a positive weight function w

into the integrand, and allowing an interval other than [-1, 1].

That is, the problem is to calculate
b
[w(x) 7 (x) ax

for some choices of a, b, and w. Fora=-1,b =1, and w(x) = 1,
the problem is the same as that considered above. Other

choices lead to other integration rules.

Gaussian quadrature also comes in other forms:
Laguerre, Hermite, Chebychev, etc. for functions with infinite
limits of integration, or which are not finite in the interval Gauss
Quadrature or Gauss Legendreis highly accurate with a small

number of points suitable for continuous functions on closed

intervals.
Interval w(x) Orthogonal polynomials
-1, 1] 1 Legendre polynomials
(-1, 1) 1 Chebyshev polynomials
1~ x? (first kind)
[-1,1] 1— 5 Chebyshev polynomials
(second kind)

[0, =) e LLaguerre polynomials
(=0, @) s Hermite polynomials
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4.6 NUMERICAL SOLUTION OF A
DIFFERENTIAL EQUATIONS

The numerical methods for solving ordinary differential
equations (ODE's) are methods of infegrating a system of first
order differential equations, since higher order ordinary
differential equations can be reduced to a set of first order
ODE's.

An ordinary differential equation is an equality involving a
function and its derivatives. An ODE of order %is an equation of

the form F(x,y'.»*,---»")=0, where y is a function of x,
y'=dy/dx is the first derivative with respect to x, and
V' =d"y/[dx" is the nth derivative with respect to x
Common numerical methods for solving initial value
probiems of ordinary differentiai equations are:
% Euler's Method
% Runge-Kutta Method

The Numerical Solution of Differential Equations covers a
wide variety of mathematical topics and technical skills, with a

variety of potential applications and career opportunities.

4.7 EULER’S METHOD

Euler’'s Method:
The simplest method of numerical integration is Euler's

method.

In order to develop a technique for solving first order
initial value problems numerically, we should first agree upon
some notation. We will assume that the problem in question can

be algebraically manipuiated into the form:
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»=f(xy)

Remember that one interpretation of the quantity y,

appearing in this expression is as the slope of the tangent line to
the function y. But, the function y is exactly what we are seeking
as a solution to the problem.

.. Slope of the solution = 7 (x,y).
We start at the point(x,, ;).

Let h denote the x-increment.

Then x, =x,+hy, is the y-coordinate of the point on the line
passing through the point (x,,y,) with slope y,(x,)= f(x,,¥,).

Thus, y, =y, +h.f(x,, ¥,)

The next approximation is found by replacing x, and y, by x,

andy,;so x,=x,+h. Thus, y, =y +h f(x,»).

In general, we obtain the following formula for n=1,2,3,...,

x,=x,_,+h=x,+nh,

yn = yn—l +h’f(xn—]’yn—])'

Example
Use Euler's Method to approximate y whenx=0.5, ‘giveri that

y =-2x-y, with y = -1 fox x =0.

Solution:

Here y =—%=—2x—y
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With y, =—-1when x, =0and take 7=0.1

y1=vo +h f(xg, yo) = -1 + 0.1% (-2*%0 - (-1)) = -0.8999

y2= v+ h f(xa, y1) = -0.8999 + 0.1% (2*0 - (-0.8999)) = -0.8299
y1 =2+ h f(Xa, y2) = -0.8299 + 0.1* (-2*0 - (-0.8299)) = -0.7869
y4 = y3+h f(x3, y3) = -0.7869 + 0.1%* (-2*0 - (-0.7869)) = -0.7683
ys = ya + h f(xs, y4) = -0.7683 + 0.1* (-2*0 - (-0.7683)) = -0.7715

Hence y = -0.7715 for x = 0.5.
Midpoint method Or Improved Euler's Method:

The Midpoint Method or improved Euler's Method is a

one-step method for solving the differential equation

»(x)= f(x,y(x)), ¥(x,) =y, and is given by the formula,

yn 1+]/y([ f?—] ’.yn !+ f( _]9yn_1)] for n= U 1 2,..

Here, & is the step size a small positive number, x, = x, +n.h,

and y, is the computed approximate value of y(x,).

The name of the method comes from the fact that in the

formula above the function f is evaluated at
x=x +h/2,

Which is the midpoint between x at which th e value of y(x) is

known and x,,, at which the value of y(x) needs to be found.
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Example

Use Euler's Improved Method to solvejx—y:--y fork& |, and

h=0.2 with the boundary condition y = 1 when x =0.

Solution:

. d
Here y :d—y"—y=f(x,y) '

X

With y, =1when x, =0and take2=0.2. .. gzo.l.

Taking y,,¥,,y;, as the approximations of y corresponding to
x, =02, x, =04, x, =0.6 respectively,

we have,

$o= 3t Wl 530+ 5 f G )

=1+ 0.2 /0+0.1,1+0.1%(-1)]

‘=U.82
h h
Vv, =y +hflx +Esy1 +Ef(x1sy|)]

=0.82 + 0.2 /10.3,.0738]

=0.6724

h h
Yy =M +hf[x2 +—2‘syz +5f(x2,y2)]
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=0.6724 + .2 £[0.5,0.60516]
=0.551368.
Hence y = 0.551368 at x = 0.6.

Modified Euler’s Method:
The accuracy of Euler's method is improved by using an

average of two slopes in the tangent line approximation.

Calculate y =y, +h.f(x,,y,) and Calculate the slope f(x,,»;)

where x, =x,+1.h, use the average of the two slopes.

_xo)f(xo,yo £ (x500)

2

e

=W +(xl

SO ¥o) + f (i, )
2

=y, +h

Continue this process.
Improved Euler's Method with step size h: The solution of the

initial-value problem

D fw y0) =,

is approximated at the sequence of points (x,,y,) (n=1,23...),
where y, is the approximate value of y(x,) by computing at

each step the two calculations:

Y =hf (%, V)t Ve (=123,
i h i1
Yo =Vou+ E[f (X5 Vo) + (x5, )]

Where x, = x, +rh and h is selected step size.
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Example
Use the Modified Euler's Method, Solve numerically the

ddx_y — x+ ywith initial condition y=1, x =0 for range 0 <x < 0.4 in

steps of 0.2.

Solution:

Given %=x+y= (f x,»), =0, yy=1, h=0.2
By Euler's Method,

Vo =V HAS (%, 5 Y,1)

W=V +hf (X, ¥,)
=1+02 f(0,1)

=1.2

By Euler's Modified Method,

i h i—
yn :ynml +5[f(xn~~]3yn—i)+f(xn’yn ])]
Putn =1, i=1in Euler Modified Method we have,

X =x+h=0+02=02,andy’ =1.2,

=0 5 G700+ £ G5 39

=1.2 +%—2~[ FO,D)+ £(0.2,1.2)]
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V= 0+ 2 G )+ £ 53]

- 1.2+0—;—[ F(0,1)+ £(0.2,1.44)]
= 1.464

yl3 =W +g‘[f(x0=J’o)+f(x|:y12)]

1.2+ 02;2[‘}‘(0,1) + /(0.2,1.464)]

1.46642

H

=3+ 5L G ) + £ G52

=12+ 02;2[ £(0,1)+ £(0.2,1.46642)]

= 1.46664

yls = Yo +';7’[f(x0’3"0)+f(xnyr)]

- 1.2+%[ £0,1)+ £(0.2,1.46664)]

= 1.46666
Hence y; = 1.4666 at x = 0.2.

Tofind y, by Euler's Method,
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yn :ynml +h-f(xn,|,y”,|)

W =0 +h.f(x19y1)
=1.4666 + 0.2 £(0.2,1.4666)

=1.7999

By Euler's Modified Method,
j h i1
yn = yn—] + E[Jf(xnm] ’yn--l) + f(xn’yn )]

Putn =2, i=1in Euler Modified Method we have,

x,=x+h=02+02=04,andy; =1.7999,
h :
V= +-2~[f(x1,yl)+f(xz,y§)]
0.2
= 1.4666 + 7[ 7(0.2,1.4666) + £(0.4,1.7999)]

=1.8533

7= 3 S )+ S (s3]

= 1.4666 +%3[ £(02,1.4666)+ £(0.4,1.8533)]
- 1.8586

W=+ 51 G0+ S (3,32
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0, |
= 1.4666+%[ £(0.2,1.4666) + £(0.4,1.8586)]
; = 1.8591

; h
Y: = +§lf(x1,y,)+f(x2,y§)]

= 1.4666+%3[ £(0.2,1.4666) + £(0.4,1.8586)]

= 1.8591

Hence y, =1.8591 atx = 0.4.

4.8 RUNGE-KUTTA METHOD

Runge-Kutta Method:

Runge-Kutta Method is the generalization of the concept

used in Modified Euler's method.

Runge-Kutta Method of First Order:

The Euler's method can also be called Runge-Kutta
method of first order. The Runge-Kutta Method is also called as

RK Method. These methods agree with Taylor's series solution

up to the terms of 4" where ris the order of RK Method.

By Euler's Method,

N =N +hf(x0,y0)

h . h .
Also, y, ZY(xo+h)=yo+Eyo+Eyo A,
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.. The Euler's method agrees with the Taylor’s series solution up
to the term in h. Hence the Euler's Method is the Runge-Kutta
method of first order.

Runge-Kutta Method of Order Two:

The Improved Euler's method can also be called Runge-
Kutta method of order two.

The solution of the initial-value problem,
%: f(x,»), y(x,)=y,is approximated at the sequence
of points (x,,y,) (n=1,2,3,4,...), where y,is the approximate

value of y(x,)by computing at each step,
yn+] = yn +%(kl +k2)9 (f’l = 152533 47-'-)7

with &, =h.f(x,,,),
k,=hf(x,+h,y +k) and
X, =X, +n.h

with h is the selected step size.

. The second order Runge-Kutta Method isr y=y+%(k,+kz)

where k, =h.f(x,,y,)and k, =h.f(x, +h,y, + k).

The Runge-Kutta Method of Order Three:

The third order Runge-Kutta formula is given by
1
" =y0+~~6~(lci +4k, +k,)
Where &, =h.f(x,,¥,),
h k
k, =h. +=, Vo + )
2 1 (x, 5 Yo 2)

k,=hf(x,+hy, +k),
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Where k =hf(x,+hy,+k).

The Runge-Kutta Method of Order Four:

The fourth order of Runge-Kutta is
1
y= y+g(k' + 2k, + 2k, + k)

Where Kk =h.f(x,, %),

h ok
by =hf (5 + 2030+,

. h .
k, = h. + =, Yy ),
3 f(x, 2 Yo 2)
ky=hf(x,+hy,+k,).

Example

Apply Runge-Kutta Method to find the approximate value of y for x
= 0.2 in step of 0.1 if dy/dx=x+y*, given thaty = 1, where x =0.

Solution:

Given %=x+y2, h=0.1, x0=0, yo=1.

i kl :h'f(xuﬁyﬂ)’

= 0.1 f(0,1)
= 0.1000

h k .
k, =h. +=, Y, + ),
2 S 5 Mo 2)

= 0.1f(0.05,1.05)
=0.1152

h k

k. =hf(x,+—,y, +-2),
3 1 075 Yo 2)
= 0.1 {0.05,1.0576)

=0.1168
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k,=h.f(x, +hy, +k).

=0.1/0.1,1.1168)
=0.1347

and k = é(k, +2k, + 2k, +k,)=0.1165

Hence y(0)=y, +k
=1.1165.
Now x, =x,+h=0+0.1=0.1
¥, =1.1165,
h=0.1.
Again, k, =h.f(x,»),

= 0.1 /0.1, 1.1165)
= 0.1347

h k
k, = h. +—, Y +—1),
2 f(x 2 Y 2)

= 0.1(0.15, 1.1838)
= 0.1551

h k
k. =h. +—, Y, +—2),
y=hf(x 5> 2)

=0.1 10.05, 1.194)
=0.1576

ky, =h.f(x,+hy +k;).
=0.1 0.2, 1.2741)
=1.823

and k = %(kl +2k, + 2k, +k,)=0.1571

Hence y(0.2)=y +k
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1.1165 + 0.1571

=1.2736.

The required solution, y=1.2736 atx=0.2.

KEY WORDS

Keywords: Quadrature, Cubature, Definite Integral, Derivative,

Polynomials, Slope, Tangent, Mid-Point, Taylor- Series.

LEARNING ACTIVITIES
a) Fill in the blanks:

1) The trapezoidal rule is a method for finding an approximate

value for a

2) The can also be called Runge-Kutta method of first
order.

b) Siate whether true or faise:

1) quadrature rule is an approximation of the definite integral of

a function,

2) Simpson’s rules generalize the trapezoidal rule to use more

than two points per interval,

ANSWER TO LEARNING ACTIVITIES

a) Fill in the blanks:

1) Definite integral

2) Euler's method

b) State whether true or false:
1) true

2) false
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MODEL QUESTIONS

1. Use Trapezoidal Rule to evaluate:

5
Ixz +2x dx.
|
Given that
X 1 2 3 4 5
F(x) 3 8 15 24 35

2. Use Simpson’s One-third Rule to evaluate:

il

dl+x

Correct to three decimal, taking h = 0.25.

3. Apply Simpson’s % rule to evaluate the following:

6
'[uxdx, given that
4

\ x 0 1 2 3 4 5

u 0.146 | 0.161 | 0.176 | 0.190 | 0.204 | 0.217

|

0.230

5. What do you know about the Gaussian Quadrature?

6. Use Euler's Method to approximate y whenx =0.5, given that

y =2x*+y, with y = -1 fox x =0.

7. Use Euler's Impro{fed Method to soive%=—2x2y forx=0.6,

and 4=0.2 with the boundary condition y = 1 when x =0.
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8. Use the Modified Euler's Method, Solve numerically the

dy

x” + ywith initial condition y=1, x =0 for range 0<x<0.6 in

steps of 0.2.

9. Use Runge-Kutta Method of fourth order to solve
dy/dc=(y—-x)/(y+x) with y(0)=1at x=0.2,0.4.

10. Discuss various types of Runge-Kutta Method.
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